MaxAbsScaler¶
- 
class 
pyspark.ml.feature.MaxAbsScaler(*, inputCol: Optional[str] = None, outputCol: Optional[str] = None)[source]¶ Rescale each feature individually to range [-1, 1] by dividing through the largest maximum absolute value in each feature. It does not shift/center the data, and thus does not destroy any sparsity.
New in version 2.0.0.
Examples
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([1.0]),), (Vectors.dense([2.0]),)], ["a"]) >>> maScaler = MaxAbsScaler(outputCol="scaled") >>> maScaler.setInputCol("a") MaxAbsScaler... >>> model = maScaler.fit(df) >>> model.setOutputCol("scaledOutput") MaxAbsScalerModel... >>> model.transform(df).show() +-----+------------+ | a|scaledOutput| +-----+------------+ |[1.0]| [0.5]| |[2.0]| [1.0]| +-----+------------+ ... >>> scalerPath = temp_path + "/max-abs-scaler" >>> maScaler.save(scalerPath) >>> loadedMAScaler = MaxAbsScaler.load(scalerPath) >>> loadedMAScaler.getInputCol() == maScaler.getInputCol() True >>> loadedMAScaler.getOutputCol() == maScaler.getOutputCol() True >>> modelPath = temp_path + "/max-abs-scaler-model" >>> model.save(modelPath) >>> loadedModel = MaxAbsScalerModel.load(modelPath) >>> loadedModel.maxAbs == model.maxAbs True >>> loadedModel.transform(df).take(1) == model.transform(df).take(1) True
Methods
clear(param)Clears a param from the param map if it has been explicitly set.
copy([extra])Creates a copy of this instance with the same uid and some extra params.
explainParam(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
fit(dataset[, params])Fits a model to the input dataset with optional parameters.
fitMultiple(dataset, paramMaps)Fits a model to the input dataset for each param map in paramMaps.
Gets the value of inputCol or its default value.
getOrDefault(param)Gets the value of a param in the user-supplied param map or its default value.
Gets the value of outputCol or its default value.
getParam(paramName)Gets a param by its name.
hasDefault(param)Checks whether a param has a default value.
hasParam(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined(param)Checks whether a param is explicitly set by user or has a default value.
isSet(param)Checks whether a param is explicitly set by user.
load(path)Reads an ML instance from the input path, a shortcut of read().load(path).
read()Returns an MLReader instance for this class.
save(path)Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)Sets a parameter in the embedded param map.
setInputCol(value)Sets the value of
inputCol.setOutputCol(value)Sets the value of
outputCol.setParams(self, \*[, inputCol, outputCol])Sets params for this MaxAbsScaler.
write()Returns an MLWriter instance for this ML instance.
Attributes
Returns all params ordered by name.
Methods Documentation
- 
clear(param: pyspark.ml.param.Param) → None¶ Clears a param from the param map if it has been explicitly set.
- 
copy(extra: Optional[ParamMap] = None) → JP¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
 - extradict, optional
 Extra parameters to copy to the new instance
- Returns
 JavaParamsCopy of this instance
- 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- 
explainParams() → str¶ Returns the documentation of all params with their optionally default values and user-supplied values.
- 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
 - extradict, optional
 extra param values
- Returns
 - dict
 merged param map
- 
fit(dataset: pyspark.sql.dataframe.DataFrame, params: Union[ParamMap, List[ParamMap], Tuple[ParamMap], None] = None) → Union[M, List[M]]¶ Fits a model to the input dataset with optional parameters.
New in version 1.3.0.
- Parameters
 - dataset
pyspark.sql.DataFrame input dataset.
- paramsdict or list or tuple, optional
 an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
- dataset
 - Returns
 Transformeror a list ofTransformerfitted model(s)
- 
fitMultiple(dataset: pyspark.sql.dataframe.DataFrame, paramMaps: Sequence[ParamMap]) → Iterator[Tuple[int, M]]¶ Fits a model to the input dataset for each param map in paramMaps.
New in version 2.3.0.
- Parameters
 - dataset
pyspark.sql.DataFrame input dataset.
- paramMaps
collections.abc.Sequence A Sequence of param maps.
- dataset
 - Returns
 _FitMultipleIteratorA thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential.
- 
getInputCol() → str¶ Gets the value of inputCol or its default value.
- 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- 
getOutputCol() → str¶ Gets the value of outputCol or its default value.
- 
getParam(paramName: str) → pyspark.ml.param.Param¶ Gets a param by its name.
- 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param has a default value.
- 
hasParam(paramName: str) → bool¶ Tests whether this instance contains a param with a given (string) name.
- 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user or has a default value.
- 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user.
- 
classmethod 
load(path: str) → RL¶ Reads an ML instance from the input path, a shortcut of read().load(path).
- 
classmethod 
read() → pyspark.ml.util.JavaMLReader[RL]¶ Returns an MLReader instance for this class.
- 
save(path: str) → None¶ Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- 
set(param: pyspark.ml.param.Param, value: Any) → None¶ Sets a parameter in the embedded param map.
- 
setInputCol(value: str) → pyspark.ml.feature.MaxAbsScaler[source]¶ Sets the value of
inputCol.
- 
setOutputCol(value: str) → pyspark.ml.feature.MaxAbsScaler[source]¶ Sets the value of
outputCol.
- 
setParams(self, \*, inputCol=None, outputCol=None)[source]¶ Sets params for this MaxAbsScaler.
New in version 2.0.0.
- 
write() → pyspark.ml.util.JavaMLWriter¶ Returns an MLWriter instance for this ML instance.
Attributes Documentation
- 
inputCol= Param(parent='undefined', name='inputCol', doc='input column name.')¶ 
- 
outputCol= Param(parent='undefined', name='outputCol', doc='output column name.')¶ 
- 
params¶ Returns all params ordered by name. The default implementation uses
dir()to get all attributes of typeParam.
-