Class NaiveBayesModel
source code
object --+
         |
        NaiveBayesModel
Model for Naive Bayes classifiers.
Contains two parameters:
- pi: vector of logs of class priors (dimension C)
- theta: matrix of logs of class conditional probabilities (CxD)
>>> data = [
...     LabeledPoint(0.0, [0.0, 0.0]),
...     LabeledPoint(0.0, [0.0, 1.0]),
...     LabeledPoint(1.0, [1.0, 0.0]),
... ]
>>> model = NaiveBayes.train(sc.parallelize(data))
>>> model.predict(array([0.0, 1.0]))
0.0
>>> model.predict(array([1.0, 0.0]))
1.0
>>> sparse_data = [
...     LabeledPoint(0.0, SparseVector(2, {1: 0.0})),
...     LabeledPoint(0.0, SparseVector(2, {1: 1.0})),
...     LabeledPoint(1.0, SparseVector(2, {0: 1.0}))
... ]
>>> model = NaiveBayes.train(sc.parallelize(sparse_data))
>>> model.predict(SparseVector(2, {1: 1.0}))
0.0
>>> model.predict(SparseVector(2, {0: 1.0}))
1.0
    | 
       
     | 
      
        
          __init__(self,
        labels,
        pi,
        theta) 
      x.__init__(...) initializes x; see help(type(x)) for signature | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          predict(self,
        x) 
      Return the most likely class for a data vector x | 
          
            source code
            
           | 
         
       
      
     | 
  
  
    | 
     Inherited from object:
      __delattr__,
      __format__,
      __getattribute__,
      __hash__,
      __new__,
      __reduce__,
      __reduce_ex__,
      __repr__,
      __setattr__,
      __sizeof__,
      __str__,
      __subclasshook__
       
     | 
  
  
    | 
     Inherited from object:
      __class__
       
     | 
  
  
  
  __init__(self,
        labels,
        pi,
        theta)
     (Constructor)
  
   | source code 
     | 
    
  
  x.__init__(...) initializes x; see help(type(x)) for signature 
  
    - Overrides:
        object.__init__
        
 - (inherited documentation)
 
    
   
 |