ClusteringEvaluator¶
- 
class 
pyspark.ml.evaluation.ClusteringEvaluator(*, predictionCol: str = 'prediction', featuresCol: str = 'features', metricName: ClusteringEvaluatorMetricType = 'silhouette', distanceMeasure: str = 'squaredEuclidean', weightCol: Optional[str] = None)[source]¶ Evaluator for Clustering results, which expects two input columns: prediction and features. The metric computes the Silhouette measure using the squared Euclidean distance.
The Silhouette is a measure for the validation of the consistency within clusters. It ranges between 1 and -1, where a value close to 1 means that the points in a cluster are close to the other points in the same cluster and far from the points of the other clusters.
New in version 2.3.0.
Examples
>>> from pyspark.ml.linalg import Vectors >>> featureAndPredictions = map(lambda x: (Vectors.dense(x[0]), x[1]), ... [([0.0, 0.5], 0.0), ([0.5, 0.0], 0.0), ([10.0, 11.0], 1.0), ... ([10.5, 11.5], 1.0), ([1.0, 1.0], 0.0), ([8.0, 6.0], 1.0)]) >>> dataset = spark.createDataFrame(featureAndPredictions, ["features", "prediction"]) ... >>> evaluator = ClusteringEvaluator() >>> evaluator.setPredictionCol("prediction") ClusteringEvaluator... >>> evaluator.evaluate(dataset) 0.9079... >>> featureAndPredictionsWithWeight = map(lambda x: (Vectors.dense(x[0]), x[1], x[2]), ... [([0.0, 0.5], 0.0, 2.5), ([0.5, 0.0], 0.0, 2.5), ([10.0, 11.0], 1.0, 2.5), ... ([10.5, 11.5], 1.0, 2.5), ([1.0, 1.0], 0.0, 2.5), ([8.0, 6.0], 1.0, 2.5)]) >>> dataset = spark.createDataFrame( ... featureAndPredictionsWithWeight, ["features", "prediction", "weight"]) >>> evaluator = ClusteringEvaluator() >>> evaluator.setPredictionCol("prediction") ClusteringEvaluator... >>> evaluator.setWeightCol("weight") ClusteringEvaluator... >>> evaluator.evaluate(dataset) 0.9079... >>> ce_path = temp_path + "/ce" >>> evaluator.save(ce_path) >>> evaluator2 = ClusteringEvaluator.load(ce_path) >>> str(evaluator2.getPredictionCol()) 'prediction'
Methods
clear(param)Clears a param from the param map if it has been explicitly set.
copy([extra])Creates a copy of this instance with the same uid and some extra params.
evaluate(dataset[, params])Evaluates the output with optional parameters.
explainParam(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Gets the value of distanceMeasure
Gets the value of featuresCol or its default value.
Gets the value of metricName or its default value.
getOrDefault(param)Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)Gets a param by its name.
Gets the value of predictionCol or its default value.
Gets the value of weightCol or its default value.
hasDefault(param)Checks whether a param has a default value.
hasParam(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined(param)Checks whether a param is explicitly set by user or has a default value.
Indicates whether the metric returned by
evaluate()should be maximized (True, default) or minimized (False).isSet(param)Checks whether a param is explicitly set by user.
load(path)Reads an ML instance from the input path, a shortcut of read().load(path).
read()Returns an MLReader instance for this class.
save(path)Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)Sets a parameter in the embedded param map.
setDistanceMeasure(value)Sets the value of
distanceMeasure.setFeaturesCol(value)Sets the value of
featuresCol.setMetricName(value)Sets the value of
metricName.setParams(self, \*[, predictionCol, …])Sets params for clustering evaluator.
setPredictionCol(value)Sets the value of
predictionCol.setWeightCol(value)Sets the value of
weightCol.write()Returns an MLWriter instance for this ML instance.
Attributes
Returns all params ordered by name.
Methods Documentation
- 
clear(param: pyspark.ml.param.Param) → None¶ Clears a param from the param map if it has been explicitly set.
- 
copy(extra: Optional[ParamMap] = None) → JP¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
 - extradict, optional
 Extra parameters to copy to the new instance
- Returns
 JavaParamsCopy of this instance
- 
evaluate(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → float¶ Evaluates the output with optional parameters.
New in version 1.4.0.
- Parameters
 - dataset
pyspark.sql.DataFrame a dataset that contains labels/observations and predictions
- paramsdict, optional
 an optional param map that overrides embedded params
- dataset
 - Returns
 - float
 metric
- 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- 
explainParams() → str¶ Returns the documentation of all params with their optionally default values and user-supplied values.
- 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
 - extradict, optional
 extra param values
- Returns
 - dict
 merged param map
- 
getDistanceMeasure() → ClusteringEvaluatorDistanceMeasureType[source]¶ Gets the value of distanceMeasure
New in version 2.4.0.
- 
getFeaturesCol() → str¶ Gets the value of featuresCol or its default value.
- 
getMetricName() → ClusteringEvaluatorMetricType[source]¶ Gets the value of metricName or its default value.
New in version 2.3.0.
- 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- 
getParam(paramName: str) → pyspark.ml.param.Param¶ Gets a param by its name.
- 
getPredictionCol() → str¶ Gets the value of predictionCol or its default value.
- 
getWeightCol() → str¶ Gets the value of weightCol or its default value.
- 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param has a default value.
- 
hasParam(paramName: str) → bool¶ Tests whether this instance contains a param with a given (string) name.
- 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user or has a default value.
- 
isLargerBetter() → bool¶ Indicates whether the metric returned by
evaluate()should be maximized (True, default) or minimized (False). A given evaluator may support multiple metrics which may be maximized or minimized.New in version 1.5.0.
- 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user.
- 
classmethod 
load(path: str) → RL¶ Reads an ML instance from the input path, a shortcut of read().load(path).
- 
classmethod 
read() → pyspark.ml.util.JavaMLReader[RL]¶ Returns an MLReader instance for this class.
- 
save(path: str) → None¶ Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- 
set(param: pyspark.ml.param.Param, value: Any) → None¶ Sets a parameter in the embedded param map.
- 
setDistanceMeasure(value: ClusteringEvaluatorDistanceMeasureType) → ClusteringEvaluator[source]¶ Sets the value of
distanceMeasure.New in version 2.4.0.
- 
setFeaturesCol(value: str) → pyspark.ml.evaluation.ClusteringEvaluator[source]¶ Sets the value of
featuresCol.
- 
setMetricName(value: ClusteringEvaluatorMetricType) → ClusteringEvaluator[source]¶ Sets the value of
metricName.New in version 2.3.0.
- 
setParams(self, \*, predictionCol="prediction", featuresCol="features", metricName="silhouette", distanceMeasure="squaredEuclidean", weightCol=None)[source]¶ Sets params for clustering evaluator.
New in version 2.3.0.
- 
setPredictionCol(value: str) → pyspark.ml.evaluation.ClusteringEvaluator[source]¶ Sets the value of
predictionCol.
- 
setWeightCol(value: str) → pyspark.ml.evaluation.ClusteringEvaluator[source]¶ Sets the value of
weightCol.New in version 3.1.0.
- 
write() → pyspark.ml.util.JavaMLWriter¶ Returns an MLWriter instance for this ML instance.
Attributes Documentation
- 
distanceMeasure: pyspark.ml.param.Param[ClusteringEvaluatorDistanceMeasureType] = Param(parent='undefined', name='distanceMeasure', doc="The distance measure. Supported options: 'squaredEuclidean' and 'cosine'.")¶ 
- 
featuresCol= Param(parent='undefined', name='featuresCol', doc='features column name.')¶ 
- 
metricName: pyspark.ml.param.Param[ClusteringEvaluatorMetricType] = Param(parent='undefined', name='metricName', doc='metric name in evaluation (silhouette)')¶ 
- 
params¶ Returns all params ordered by name. The default implementation uses
dir()to get all attributes of typeParam.
- 
predictionCol= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶ 
- 
weightCol= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶ 
-