RankingEvaluator¶
- 
class 
pyspark.ml.evaluation.RankingEvaluator(*, predictionCol: str = 'prediction', labelCol: str = 'label', metricName: RankingEvaluatorMetricType = 'meanAveragePrecision', k: int = 10)[source]¶ Evaluator for Ranking, which expects two input columns: prediction and label.
New in version 3.0.0.
Notes
Experimental
Examples
>>> scoreAndLabels = [([1.0, 6.0, 2.0, 7.0, 8.0, 3.0, 9.0, 10.0, 4.0, 5.0], ... [1.0, 2.0, 3.0, 4.0, 5.0]), ... ([4.0, 1.0, 5.0, 6.0, 2.0, 7.0, 3.0, 8.0, 9.0, 10.0], [1.0, 2.0, 3.0]), ... ([1.0, 2.0, 3.0, 4.0, 5.0], [])] >>> dataset = spark.createDataFrame(scoreAndLabels, ["prediction", "label"]) ... >>> evaluator = RankingEvaluator() >>> evaluator.setPredictionCol("prediction") RankingEvaluator... >>> evaluator.evaluate(dataset) 0.35... >>> evaluator.evaluate(dataset, {evaluator.metricName: "precisionAtK", evaluator.k: 2}) 0.33... >>> ranke_path = temp_path + "/ranke" >>> evaluator.save(ranke_path) >>> evaluator2 = RankingEvaluator.load(ranke_path) >>> str(evaluator2.getPredictionCol()) 'prediction'
Methods
clear(param)Clears a param from the param map if it has been explicitly set.
copy([extra])Creates a copy of this instance with the same uid and some extra params.
evaluate(dataset[, params])Evaluates the output with optional parameters.
explainParam(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
getK()Gets the value of k or its default value.
Gets the value of labelCol or its default value.
Gets the value of metricName or its default value.
getOrDefault(param)Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)Gets a param by its name.
Gets the value of predictionCol or its default value.
hasDefault(param)Checks whether a param has a default value.
hasParam(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined(param)Checks whether a param is explicitly set by user or has a default value.
Indicates whether the metric returned by
evaluate()should be maximized (True, default) or minimized (False).isSet(param)Checks whether a param is explicitly set by user.
load(path)Reads an ML instance from the input path, a shortcut of read().load(path).
read()Returns an MLReader instance for this class.
save(path)Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)Sets a parameter in the embedded param map.
setK(value)Sets the value of
k.setLabelCol(value)Sets the value of
labelCol.setMetricName(value)Sets the value of
metricName.setParams(self, \*[, predictionCol, labelCol, k])Sets params for ranking evaluator.
setPredictionCol(value)Sets the value of
predictionCol.write()Returns an MLWriter instance for this ML instance.
Attributes
Returns all params ordered by name.
Methods Documentation
- 
clear(param: pyspark.ml.param.Param) → None¶ Clears a param from the param map if it has been explicitly set.
- 
copy(extra: Optional[ParamMap] = None) → JP¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
 - extradict, optional
 Extra parameters to copy to the new instance
- Returns
 JavaParamsCopy of this instance
- 
evaluate(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → float¶ Evaluates the output with optional parameters.
New in version 1.4.0.
- Parameters
 - dataset
pyspark.sql.DataFrame a dataset that contains labels/observations and predictions
- paramsdict, optional
 an optional param map that overrides embedded params
- dataset
 - Returns
 - float
 metric
- 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- 
explainParams() → str¶ Returns the documentation of all params with their optionally default values and user-supplied values.
- 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
 - extradict, optional
 extra param values
- Returns
 - dict
 merged param map
- 
getLabelCol() → str¶ Gets the value of labelCol or its default value.
- 
getMetricName() → RankingEvaluatorMetricType[source]¶ Gets the value of metricName or its default value.
New in version 3.0.0.
- 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- 
getParam(paramName: str) → pyspark.ml.param.Param¶ Gets a param by its name.
- 
getPredictionCol() → str¶ Gets the value of predictionCol or its default value.
- 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param has a default value.
- 
hasParam(paramName: str) → bool¶ Tests whether this instance contains a param with a given (string) name.
- 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user or has a default value.
- 
isLargerBetter() → bool¶ Indicates whether the metric returned by
evaluate()should be maximized (True, default) or minimized (False). A given evaluator may support multiple metrics which may be maximized or minimized.New in version 1.5.0.
- 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user.
- 
classmethod 
load(path: str) → RL¶ Reads an ML instance from the input path, a shortcut of read().load(path).
- 
classmethod 
read() → pyspark.ml.util.JavaMLReader[RL]¶ Returns an MLReader instance for this class.
- 
save(path: str) → None¶ Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- 
set(param: pyspark.ml.param.Param, value: Any) → None¶ Sets a parameter in the embedded param map.
- 
setK(value: int) → pyspark.ml.evaluation.RankingEvaluator[source]¶ Sets the value of
k.New in version 3.0.0.
- 
setLabelCol(value: str) → pyspark.ml.evaluation.RankingEvaluator[source]¶ Sets the value of
labelCol.New in version 3.0.0.
- 
setMetricName(value: RankingEvaluatorMetricType) → RankingEvaluator[source]¶ Sets the value of
metricName.New in version 3.0.0.
- 
setParams(self, \*, predictionCol="prediction", labelCol="label", metricName="meanAveragePrecision", k=10)[source]¶ Sets params for ranking evaluator.
New in version 3.0.0.
- 
setPredictionCol(value: str) → pyspark.ml.evaluation.RankingEvaluator[source]¶ Sets the value of
predictionCol.New in version 3.0.0.
- 
write() → pyspark.ml.util.JavaMLWriter¶ Returns an MLWriter instance for this ML instance.
Attributes Documentation
- 
k: pyspark.ml.param.Param[int] = Param(parent='undefined', name='k', doc='The ranking position value used in meanAveragePrecisionAtK|precisionAtK|ndcgAtK|recallAtK. Must be > 0. The default value is 10.')¶ 
- 
labelCol= Param(parent='undefined', name='labelCol', doc='label column name.')¶ 
- 
metricName: pyspark.ml.param.Param[RankingEvaluatorMetricType] = Param(parent='undefined', name='metricName', doc='metric name in evaluation (meanAveragePrecision|meanAveragePrecisionAtK|precisionAtK|ndcgAtK|recallAtK)')¶ 
- 
params¶ Returns all params ordered by name. The default implementation uses
dir()to get all attributes of typeParam.
- 
predictionCol= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶ 
-